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Abstract. In this short note, we introduce a notion of discrete quadratic di�erential on a
�lling, elastic graph on a surface. This gives a discrete analogue of holomorphic quadratic
di�erentials, and in particular a system of coordinates on measured foliations. Unlike other
representations (e.g., train tracks), this gives a single uniform system of coordinates for all
measured foliations on a closed surface. It is also useful for computationally approximating
actual harmonic measured foliations.

1. Corner structures and quadratic differentials

De�nition 1. A �lling elastic graph pΓ, αq in a surface Σ is a graph Γ (1-dimensional CW
complex) embedded in Σ that is �lling, in the sense that the complementary regions are all
disks, and elastic, in the sense that each edge e has an associated number αpeq P Rě0, the
elastic constant.
An elastic graph has a natural dual elastic graph pΓ˚, α˚q, where Γ˚ is the usual dual of Γ

and α˚pe˚q “ 1{αpeq.

De�nition 2. A corner structure on a �lling graph Γ is an assignment of a marking mpcq P
tˆ, ˝u for each corner c of a face of ΣzΓ. We require that each face have at least two ˆ
markings and each vertex have at least two ˝ markings.
A length structure p`,mq on a �lling elastic graph Γ is a corner structure on Γ and an

assignment `peq P Rě0 of a length to each edge e of Γ.

Example 3. If f : Γ Ñ S1 is a map, linear on the edges, so that each vertex has some incident
edges going left and some going right, then we can get a length structure by assigning to
each edge e with endpoints v1 and v2

`peq “ |fpv1q ´ fpv2q|

and, for a corner c at vertex v2 between vertices v1 and v3,

mpcq “

#

ˆ signpfpv2q ´ fpv1qq ‰ signpfpv3q ´ fpv2qq

˝ otherwise,

where fpvi`1q´ fpviq is interpreted in the obvious signed way on the circle. Loosely, mpcq is
an ˆ if there is a sign-change at c when walking around the face.

To construct a length structure from a measured foliation F , over-
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lay Γ on F so that the edges don't backtrack as on the right. Mark
a corner with ˝ if there is a leaf running in to that corner, and ˆ
otherwise. The length `peq is the total measure of e with respect to
the measured foliation.
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De�nition 4. A sequence of non-negative real numbers px1, . . . , xkq is said to satisfy the
triangle inequality if, for each i P t1, . . . , ku, we have

xi ď
ÿ

j‰i

xj.

Observe that satisfying the triangle inequality implies that k ě 2. If k “ 2, then x1 “ x2. If
k “ 3, this is the usual triangle inequality.

De�nition 5. A length structure p`,mq on an elastic graph pΓ, αq is closed if it satis�es the
following triangle inequality on each face f of Γ. Around f , we see a (cyclic) sequence of
edges e1, . . . , en, separated by corners c0, . . . , cn “ c0 (with ci between ei´1 and ei). Rotate
the face so that mpc0q “ ˆ, and suppose that there are a total of k di�erent ˆ's around the
face, at locations

0 “ i0 ă i1 ă ¨ ¨ ¨ ă ik´1 ă ik “ n.

Then, for each sequence of edges between ˆ's, we compute the total length:

xj “

ij
ÿ

t“ij´1`1

`petq.

The constraint to make the length structure closed is that px1, . . . , xkq satisfy the triangle
inequality of De�nition 4.

Note that, if we hadn't required that there be at least two ˆ's around a face, it would be
forced by the triangle inequalities in De�nition 4. In the case where there are exactly two
ˆ's, the two inequalities of De�nition 4 combine to give an equality x1 “ x2.

Example 6. The length structures from Example 3 are automatically closed: On each face,
we can divide the edges into �left-moving� edges and �right-moving� edges, with the sum of
lengths of the left-moving edges equal to the sum of lengths of the right-moving edges. Left-
moving and right-moving edges are divided by an ˆ. This immediately implies the relevant
triangle inequalities.

De�nition 7. A length structure p`,mq on an elastic graph pΓ, αq induces a dual length
structure `˚ on the dual graph by

`˚pe˚q “ `peq{αpeq

m˚
pc˚q “

#

ˆ mpcq “ ˝

˝ mpcq “ ˆ,

where e and e˚ are corresponding edges and c and c˚ are corresponding corners. Observe
that the double dual returns to the original length structure.

De�nition 8. A length structure is co-closed if its dual is closed; that is, it satis�es weighted
triangle inequalities at each vertex.

Example 9. Suppose Γ is a train track on the surface. The train track structure gives a
corner structure on Γ: At each switch of Γ, place ˝'s at the two smooth corners, and ˆ's
everywhere else. If Γ is a weighted train track with weights µpeq, we get a co-closed length
structure on Γ, by setting `peq “ αpeqµpeq. The triangle inequalities at the vertices become
the usual equality constraints for weights on train tracks.
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De�nition 10. A harmonic length structure or discrete quadratic di�erential on a �lling
elastic graph is a closed and co-closed length structure on the graph.

One intuition is that a discrete quadratic di�erential (non-zero on each edge) gives a
rectangle-tiled surface: each edge e gives a rectangle of aspect ratio αpeq, with length `peq
and width `˚pe˚q “ `peq{αpeq. These rectangles are sewn together at the faces and vertices.
The triangle inequalities guarantee that there is at least one way to sew them together,
although there may be some ambiguity; this will be addressed later.
As with usual holomorphic quadratic di�erentials, there is a version of the Poincaré-Hopf

theorem.

De�nition 11. Given a corner structure m, let nˆ and n˝ be the number of ˆ's or ˝'s in m
around a face or vertex. For a face f and vertex v, de�ne

indexpfq :“ nˆpfq ´ 2

indexpvq :“ n˝pV q ´ 2.

Proposition 12. For any length structure on a graph Γ in a surface Σ,
ÿ

f a face

indexpfq `
ÿ

v a vertex

indexpvq “ ´2χpΣq.

Proof. Let V , E, and F be, respectively, the number of vertices, edges, and faces of Γ. Since
the total number of corners is 2E, we have

2E “
ÿ

f

nˆpfq `
ÿ

v

n˝pvq

“ 2F `
ÿ

f

indexpfq ` 2V `
ÿ

v

indexpvq. �

In light of Proposition 12, we say that a vertex or face is non-singular if its index is 0, i.e.,
if it has the minimal number of ˆ's or ˝'s, respectively.
We would like to say that a discrete quadratic di�erential has associated horizontal and

vertical measured foliations. However, we need a little bit of extra structure.

De�nition 13. A discrete measured foliation on a �lling graph Γ Ă Σ is a closed length
structure on Γ, together with, for each face f of Γ, a choice of tree Tf and map φf : Bf Ñ Tf
so that

‚ between adjacent ˆ's on Bf , the map φf is an isometry (with respect to the metric
on Γ given by the length structure), and

‚ Tf is the convex hull of φf pvq, where v ranges over the vertices of f that are marked
by ˆ.

If f is non-singular, then Tf is necessarily an interval. If f has index 1, then Tf is a
tripod, with lengths uniquely determined by the length structure. In general, the triangle
inequalities guarantee there is at least one valid tree Tf . For indexpfq ě 1, the set of possible
trees generically has dimension indexpfq ´ 1, and may be conveniently parameterized by
triangulating the face and specifying the lengths on each edge of the triangulation, subject
to triangle inequalities.

If the length of every edge is non-zero, a discrete measured foliation canonically determines
a measured foliation on Σ. (If some of the edge lengths are 0, then you canonically get a
partial measured foliation, which may be blown up to get an actual measured foliation.)
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Proposition 14. For any �lling graph Γ, every Whitehead equivalence class of measured
foliations may be realized by at least one discrete measured foliation on Γ.

We can also see Whitehead equivalence discretely. For simplicity, we assume that Γ is a
triangulation, i.e., each face of Γ has three sides; this guarantees that we do not need the
extra structure of the trees Tf .

Proposition 15. Two discrete measured foliations on a triangulation Γ give Whitehead
equivalent measured foliations on Σ if and only if they are related by the following local
moves, in each case constrained to preserve the triangle inequalities.

(1) At a non-singular vertex, add a constant to the lengths on one side of the vertex and
subtract the same constant from the lengths on the other side.

(2) Change an ˝ to an ˆ, or vice versa.
(3) Around an edge of length 0 with adjacent markings ˆ˝ˆ˝ in counterclockwise order,

switch the markings to ˝ˆ˝ˆ, or vice versa.

De�nition 16. The energy of a length structure p`,mq on an elastic graph pΓ, αq is

Ep`q :“
ÿ

e

`peq2

αpeq
.

Proposition 17. If Γ Ă Σ is a �lling elastic graph, then every discrete measured foliation
is equivalent by the moves above to an essentially unique harmonic (co-closed) measured
foliation. Furthermore, this harmonic measured foliation is a global minimum for the energy.

Here essentially unique means that the lengths are the same, and that the markings di�er
by only the two allowed moves that don't change the lengths at all. One proof goes through
an explicit algorithm: With �xed markings, energy is a quadratic function of the edge lengths.
The triangle inequalities (and positivity of the lengths) give linear conditions on the lengths.
The minimum with given markings is therefore a quadratic-programming problem, which is
e�ciently solvable. You may then need to switch around some markings in order to make
further progress, but any local minimum is necessarily harmonic.
From the point of view of surfaces, one interesting feature is that you get a canonical rep-

resentative of any measured foliation, including for closed surfaces. Train tracks, by contrast,
give canonical representatives for measured foliation (assuming that the complementary re-
gions all have at least 3 cusps, i.e., that every face is singular), but a single train track does
not cover all measured foliations.

2. Train-track paths and recurrence

De�nition 18. A train track path in a corner structure m for a �lling graph Γ is a path γ
of edges of Γ so that, at each vertex that γ passes through, there is at least one ˝ on each
side of γ through the vertex.

(Picture of train-track condition.)

Lemma 19. If p`,mq is a discrete measured foliation on Γ and γ is a closed train track path
on pΓ,mq, then the length of γ with respect to the measured foliation induced by p`,mq is

ÿ

ePγ

`peq.
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De�nition 20. A corner structure m on Γ is recurrent if, for every edge of Γ, there is a
closed train track path that passes through e. Dually, m is transversally recurrent if pm˚,Γ˚q
is recurrent.

Theorem 21. The corner structure pΓ,mq is transversally recurrent if and only if there is
a closed length structure compatible with m that is positive on each edge.

This is very close to Proposition 1.3.1 and Corollary 1.3.5 by Penner and Harer [5], al-
though the train track structures he works with are less general (in that all vertices in a
standard train track structure are non-singular in our terms). The statement can also be
strengthened slightly to include cases where some edges have zero length.

Proof. If m is transversally recurrent, let pγiq be a sequence of loops that pass through each
edge. Then de�ne

`peq “
ÿ

i

npγi, eq,

where npγi, eq is the number of times the loop γi crosses the edge e. These satisfy the triangle
inequalities on each face.
Conversely, suppose that we have a closed length structure ` on pΓ,mq. The conditions

for existence of a closed length structure are linear equalities and inequalities with rational
coe�cients, so we may assume that ` is rational. Scale ` so that the values are even integers.
Then the triangle inequalities guarantee that there is an integer measured foliation F (i.e.,
a collection of curves) so that `peq is the number of intersections of F with e. But then for
each edge e there is at least one curve that intersects e. �

Corollary 22. If p`,mq is a harmonic discrete quadratic di�erential on Γ, then, for each
edge e with `peq ‰ 0, there is a closed train track path running through e.

Proof. Direct from Theorem 21, using the fact that ` is co-closed. �

3. Computational approximations

There are two obvious types of applications for this model for discrete quadratic di�eren-
tials:

‚ You could take as coarse a graph as possible, with very few edges, to give (e.g.) an
e�cient coding for the space of measured foliations.

‚ You could take a very �ne graph, with the goal of approximating well the actual
harmonic measured foliations on the underlying surface.

We now explore the second of these. There is a long history of discrete approximations to
harmonic functions or 1-forms on planar domains or Riemann surface Σ.
The most relevant family of approximations starts from approximating Σ by a triangu-

lation T into Euclidean triangles with acute angles. Then an arbitrary function on Σ can
be approximated by a PL function f , linear on each simplex. Harmonic functions are the
minimum of the Laplacian ∇2, which can be evaluated on f , despite the fact that f is not
di�erentiable. After a short calculation [1, 3, 6], one �nds that

(23) ∇2
pfq “

ÿ

e edge of T

cotpαq ` cotpβq

2

`

fpvq ´ fpwq
˘

,

where v and w are the two endpoints of e and α and β are the two angles opposite from e in
the adjacent triangles. Since the triangles were assumed to be acute, these coe�cients are
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Figure 1. Harmonic measured foliations computed by this method. The
measured foliation obtained by taking a measured foliation supported in a
neighborhood of three disjoint curves (on the left, middle, and right of the
surface) and �nding the harmonic representative in the Whitehead equivalence
class.

positive. (In fact, we just need α` β ă π for the coe�cients to be positive.) By comparison
with De�nition 16, it is natural to look at the �lling elastic graph made of the 1-skeleton
of T , with

(24) αpeq “
2

cotpαq ` cotpβq

with notation as above.
There are very precise theorems about how well discrete harmonic 1-forms, i.e., 1-forms

that are local minima for Equation (23), approximate actual harmonic 1-forms.
David Palmer, in work supervised by Steven Gortler, re�ned and implemented the above

algorithm for triangulations with cotangent weights, with the following broad steps.

(1) Start with a surface Σ embedded in R3.
(2) Take a set of points well-distributed on Σ and connect nearby points to get a trian-

gulation T of Σ. If necessary, adjust the triangulation so the coe�cients in the next
step are positive.

(3) Create an elastic graph pΓ, αq from the 1-skeleton of T , with α from Equation (24).
(4) To create an initial (non-harmonic) foliation, pick a curve C on Σ transverse to the

edges of T and not entering and exiting the same side of a triangle of T .
(5) Create a foliation F0 so that the length of an edge e is equal to the size of C X e.

(Typically this is 0 or 1.)
(6) Use an iterated relaxation technique to �nd the harmonic foliation F1 in the White-

head class of F0.

Details will appear in David Palmer's forthcoming thesis. Figure 1 shows an example of the
output from his program.
The cotangent weights can be generalized considerably into decompositions into quadrilat-

erals where the diagonals meet at right angles, considered by Mercat [4]. To construct such
a decomposition into quadrilaterals from a triangulation T by acute triangles, take the dual
decompositions T ˚, with the vertices of T ˚ placed at the circumcenters of the triangles of T ,
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and join each vertex of T ˚ to the vertices of the corresponding triangle of T . The important
special case where the quadrilaterals are rhombi was already considered by Du�n [2].
It is worth noting that the notion of a discrete quadratic di�erential is self-dual: if p`,mq

is a discrete quadratic di�erential on pΓ, αq, then p`˚,m˚q is a discrete quadratic di�erential
on pΓ˚, α˚q. This allows one to get computational approximations to the harmonic conjugate
of a given measured foliation.
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