Detecting rational maps using elastic graphs Dylan Thurston

In Memoriam: William P. Thurston, 1946–2012

Portions joint with J. Kahn and K. Pilgrim

http://pages.iu.edu/~dpthurst/writing/DetectRational.pdf

August 18, 2015

Outline

Spines and automata

Main theorem

Energies

Behavior under iteration

Questions

Spines for branched self covers

Branched self-cover of sphere

$$f: (S^2, P) \to (S^2, P).$$

Gives virtual endomorphism or topological automaton of a spine:

with π_S a covering map (restriction of f), ϕ_S the inclusion map, and maps π and ϕ on graphs commuting up to homotopy.

Spine for Σ : graph that fills Σ (complement: punctured disks)

Example:
$$f(z) = (1 + z^2)/(1 - z^2)$$

Critical portrait:

Set $P = \{-1, 1, \infty\}$

- Collapse maximal tree in Γ_0 and lift in Γ_1 to get R_0, R_1
- Homotop ϕ so vertices of R_1 map to vertex of R_0
- Label edges by $\pi_1(R_0)$

- Collapse maximal tree in Γ_0 and lift in Γ_1 to get R_0, R_1
- Homotop ϕ so vertices of R_1 map to vertex of R_0
- Label edges by $\pi_1(R_0)$

- Collapse maximal tree in Γ_0 and lift in Γ_1 to get R_0, R_1
- Homotop ϕ so vertices of R_1 map to vertex of R_0
- Label edges by $\pi_1(R_0)$

- Collapse maximal tree in Γ_0 and lift in Γ_1 to get R_0, R_1
- Homotop ϕ so vertices of R_1 map to vertex of R_0
- Label edges by $\pi_1(R_0)$

- Collapse maximal tree in Γ_0 and lift in Γ_1 to get R_0, R_1
- Homotop ϕ so vertices of R_1 map to vertex of R_0
- Label edges by $\pi_1(R_0)$

Iteration

Outline

Spines and automata

Main theorem

Energies

Behavior under iteration

Questions

Theorem

Let $f: (S^2, P) \mathfrak{S}$ be a branched self-cover with at least one branch point in each cycle in P, and let $\pi, \phi: \Gamma_1 \to \Gamma_0$ be a corresponding virtual endomorphism. Then the following are equivalent:

- f equivalent to a rational map
- for some metric on Γ_0 and some n > 0, $\phi_n \colon \Gamma_n \to \Gamma_0$ is loosening
- for every metric on Γ_0 and every $n \gg 0$, $\phi_n \colon \Gamma_n \to \Gamma_0$ is loosening

Definition

If Γ_1 , Γ_0 are metric graphs, a Lipshitz map $\phi: \Gamma_1 \to \Gamma_0$ is *loosening* if, for almost every $y \in \Gamma_0$,

$$\sum_{\in \phi^{-1}(y)} |\phi'(x)| < 1.$$

In particular, ϕ is 1-Lipshitz.

X

Example:
$$f(z) = (1 + z^2)/(1 - z^2)$$

9 / 22

Example:
$$f(z) = (1 + z^2)/(1 - z^2)$$

Example:
$$f(z) = (1 + z^2)/(1 - z^2)$$

Outline

Spines and automata

Main theorem

► Energies

Behavior under iteration

Questions

• Elastic graph: graph with *spring* constant on each edge

• Length graph: graph with *length* on each edge

•
$$\operatorname{Emb}(\phi) = \sup_{y \in \Gamma_2} \sum_{x \in \phi^{-1}(y)} |\phi'(x)|$$

•
$$\operatorname{Dir}(f) = \int_{x \in \Gamma_2} |f'(x)|^2 dx$$

•
$$\mathsf{EL}(c) = \int_{y \in \Gamma_1} n_c(y)^2 \, dy$$

Submultiplicative...

- $\operatorname{Dir}(f \circ \phi) \leq \operatorname{Emb}(\phi) \operatorname{Dir}(f)$
- $\mathsf{EL}(\phi \circ c) \leq \mathsf{EL}(c) \operatorname{Emb}(\phi)$

- $\operatorname{Dir}[f \circ \phi] \leq \operatorname{Emb}[\phi] \operatorname{Dir}[f]$
- $\mathsf{EL}[\phi \circ c] \leq \mathsf{EL}[c] \operatorname{Emb}[\phi]$

- Elastic graph: graph with *spring* constant on each edge
- Length graph: graph with *length* on each edge

•
$$\mathsf{Emb}(\phi) = \sup_{y \in \Gamma_2} \sum_{x \in \phi^{-1}(y)} |\phi'(x)|^2$$

• $\mathsf{Dir}(f) = \int_{x \in \Gamma_2} |f'(x)|^2 dx$
• $\mathsf{EL}(c) = \int_{x \in \Gamma} n_c(y)^2 dy$

Submultiplicative...

- $\operatorname{Dir}(f \circ \phi) \leq \operatorname{Emb}(\phi) \operatorname{Dir}(f)$
- $\mathsf{EL}(\phi \circ c) \leq \mathsf{EL}(c) \mathsf{Emb}(\phi)$

- $\operatorname{Dir}[f \circ \phi] \leq \operatorname{Emb}[\phi] \operatorname{Dir}[f]$
- $\mathsf{EL}[\phi \circ c] \leq \mathsf{EL}[c] \operatorname{Emb}[\phi]$

- Elastic graph: graph with *spring* constant on each edge
- Length graph: graph with *length* on each edge

•
$$\operatorname{Emb}(\phi) = \sup_{y \in \Gamma_2} \sum_{x \in \phi^{-1}(y)} |\phi'(x)|^2$$

• $\operatorname{Dir}(f) = \int_{x \in \Gamma_2} |f'(x)|^2 dx$
• $\operatorname{EL}(c) = \int_{y \in \Gamma_1} n_c(y)^2 dy$

Submultiplicative...

- $\operatorname{Dir}(f \circ \phi) \leq \operatorname{Emb}(\phi) \operatorname{Dir}(f)$
- $\mathsf{EL}(\phi \circ c) \leq \mathsf{EL}(c) \mathsf{Emb}(\phi)$

- $\operatorname{Dir}[f \circ \phi] \leq \operatorname{Emb}[\phi] \operatorname{Dir}[f]$
- $\mathsf{EL}[\phi \circ c] \leq \mathsf{EL}[c] \operatorname{Emb}[\phi]$

- Elastic graph: graph with *spring* constant on each edge
- Length graph: graph with *length* on each edge

•
$$\operatorname{Emb}(\phi) = \sup_{y \in \Gamma_2} \sum_{x \in \phi^{-1}(y)} |\phi'(x)|^2$$

• $\operatorname{Dir}(f) = \int_{x \in \Gamma_2} |f'(x)|^2 dx$
• $\operatorname{EL}(c) = \int_{y \in \Gamma_1} n_c(y)^2 dy$

Submultiplicative...

- $\operatorname{Dir}(f \circ \phi) \leq \operatorname{Emb}(\phi) \operatorname{Dir}(f)$
- $\mathsf{EL}(\phi \circ c) \leq \mathsf{EL}(c) \mathsf{Emb}(\phi)$

- $\operatorname{Dir}[f \circ \phi] \leq \operatorname{Emb}[\phi] \operatorname{Dir}[f]$
- $\mathsf{EL}[\phi \circ c] \leq \mathsf{EL}[c] \operatorname{Emb}[\phi]$

- Elastic graph: graph with *spring* constant on each edge
- Length graph: graph with *length* on each edge

•
$$\operatorname{Emb}(\phi) = \sup_{y \in \Gamma_2} \sum_{x \in \phi^{-1}(y)} |\phi'(x)|^2$$

• $\operatorname{Dir}(f) = \int_{x \in \Gamma_2} |f'(x)|^2 dx$
• $\operatorname{EL}(c) = \int_{y \in \Gamma_1} n_c(y)^2 dy$

Submultiplicative...

- $\operatorname{Dir}(f \circ \phi) \leq \operatorname{Emb}(\phi) \operatorname{Dir}(f)$
- $\mathsf{EL}(\phi \circ c) \leq \mathsf{EL}(c) \operatorname{Emb}(\phi)$

- $\operatorname{Dir}[f \circ \phi] \leq \operatorname{Emb}[\phi] \operatorname{Dir}[f]$
- $\mathsf{EL}[\phi \circ c] \leq \mathsf{EL}[c] \mathsf{Emb}[\phi]$

- Elastic graph: graph with *spring* constant on each edge
- Length graph: graph with *length* on each edge

•
$$\operatorname{Emb}(\phi) = \sup_{y \in \Gamma_2} \sum_{x \in \phi^{-1}(y)} |\phi'(x)|^2$$

• $\operatorname{Dir}(f) = \int_{x \in \Gamma_2} |f'(x)|^2 dx$
• $\operatorname{EL}(c) = \int_{y \in \Gamma_1} n_c(y)^2 dy$

Submultiplicative...

- $\operatorname{Dir}(f \circ \phi) \leq \operatorname{Emb}(\phi) \operatorname{Dir}(f)$
- $\mathsf{EL}(\phi \circ c) \leq \mathsf{EL}(c) \operatorname{Emb}(\phi)$

- $\operatorname{Dir}[f \circ \phi] \leq \operatorname{Emb}[\phi] \operatorname{Dir}[f]$
- $\mathsf{EL}[\phi \circ c] \leq \mathsf{EL}[c] \mathsf{Emb}[\phi]$

Stretch factors for graph maps

I heorem

For any $\phi: \Gamma_1 \to \Gamma_2$,

$\mathsf{Emb}[\phi] = \mathsf{SF}_{\mathsf{Dir}}[\phi] = \mathsf{SF}_{\mathsf{EL}}[\phi].$

Stretch factors for graph maps

Union of
$$\xrightarrow{c}$$
 Elastic $\xrightarrow{\phi}$ Elastic \xrightarrow{f} Length
graph Γ_2 \xrightarrow{f} Length
graph K
• Emb(ϕ) = $\sup_{y \in \Gamma_2} \sum_{x \in \phi^{-1}(y)} |\phi'(x)|$
• Dir(f) = $\int_{x \in \Gamma_2} |f'(x)|^2 dx$
• EL(f) = $\int_{y \in \Gamma_1} n_c(y)^2 dy$
• SF_{EL}[ϕ] = $\sup_{C,c} \frac{\text{EL}[\phi \circ c]}{\text{EL}[c]}$

Theorem

For any $\phi: \Gamma_1 \rightarrow \Gamma_2$,

$$\mathsf{Emb}[\phi] = \mathsf{SF}_{\mathsf{Dir}}[\phi] = \mathsf{SF}_{\mathsf{EL}}[\phi]$$

Stretch factors for graph maps

Union of
$$\xrightarrow{c}$$
 Elastic $\xrightarrow{\phi}$ Elastic \xrightarrow{f} Length graph K
• Emb(ϕ) = $\sup_{y \in \Gamma_2} \sum_{x \in \phi^{-1}(y)} |\phi'(x)|$
• Dir(f) = $\int_{x \in \Gamma_2} |f'(x)|^2 dx$
• EL(f) = $\int_{y \in \Gamma_1} n_c(y)^2 dy$
• SF_{EL}[ϕ] = $\sup_{C,c} \frac{\text{EL}[\phi \circ c]}{\text{EL}[c]}$

Theorem

For any $\phi: \ \Gamma_1 \rightarrow \Gamma_2$,

$$\mathsf{Emb}[\phi] = \mathsf{SF}_{\mathsf{Dir}}[\phi] = \mathsf{SF}_{\mathsf{EL}}[\phi].$$

Energies and stretch factors for surface maps

• For $f: \Sigma_2 \to K$, have Dirichlet energy.

• For $c: C \to \Sigma_1$ an embedded simple closed multi-curve, have *extremal* length EL[c].

• For $\phi: \Sigma_1 \hookrightarrow \Sigma_2$ a topological embedding, $SF[\phi] = \sup_{C,c} \frac{\mathsf{EL}[\phi \circ c]}{\mathsf{EL}[c]}$.

Theorem (Kahn, Pilgrim, T)

 $\begin{array}{l} \mathsf{SF}[\phi] \leqslant 1 \Leftrightarrow \phi \text{ homotopic to conformal embedding} \\ \mathsf{SF}[\phi] < 1 \Leftrightarrow \phi \text{ homotopic to conformal embedding with some space} \end{array}$

If SF[ϕ] > 1, then SF[ϕ] is the minimal quasi-conformal constant in [ϕ]. General interpretation??

Dylan Thurston (Indiana University) Detecting rational maps using elastic graphs

Energies and stretch factors for surface maps

• For $f: \Sigma_2 \to K$, have Dirichlet energy.

• For $c: C \rightarrow \Sigma_1$ an embedded simple closed multi-curve, have *extremal* length EL[c].

• For $\phi: \Sigma_1 \hookrightarrow \Sigma_2$ a topological embedding, $SF[\phi] = \sup_{C \in C} \frac{EL[\phi \circ c]}{EL[c]}$.

Theorem (Kahn, Pilgrim, T)

 $\begin{array}{l} \mathsf{SF}[\phi] \leqslant 1 \Leftrightarrow \phi \text{ homotopic to conformal embedding} \\ \mathsf{SF}[\phi] < 1 \Leftrightarrow \phi \text{ homotopic to conformal embedding with some space} \end{array}$

Energies and stretch factors for surface maps

• For $f: \Sigma_2 \to K$, have Dirichlet energy.

• For $c: C \rightarrow \Sigma_1$ an embedded simple closed multi-curve, have *extremal* length EL[c].

• For $\phi: \Sigma_1 \hookrightarrow \Sigma_2$ a topological embedding, $\mathsf{SF}[\phi] = \sup_{C,c} \frac{\mathsf{EL}[\phi \circ c]}{\mathsf{EL}[c]}$.

Theorem (Kahn, Pilgrim, T)

 $SF[\phi] \leq 1 \Leftrightarrow \phi$ homotopic to conformal embedding $SF[\phi] < 1 \Leftrightarrow \phi$ homotopic to conformal embedding with some space

Energies and stretch factors for surface maps

• For $f: \Sigma_2 \to K$, have Dirichlet energy.

 For c: C → Σ₁ an embedded simple closed multi-curve, have extremal length EL[c].

• For $\phi: \Sigma_1 \hookrightarrow \Sigma_2$ a topological embedding, $\mathsf{SF}[\phi] = \sup_{C,c} \frac{\mathsf{EL}[\phi \circ c]}{\mathsf{EL}[c]}$.

Theorem (Kahn, Pilgrim, T)

 $\mathsf{SF}[\phi] \leq 1 \Leftrightarrow \phi$ homotopic to conformal embedding $\mathsf{SF}[\phi] < 1 \Leftrightarrow \phi$ homotopic to conformal embedding with some space

Energies and stretch factors for surface maps

• For $f: \Sigma_2 \to K$, have Dirichlet energy.

 For c: C → Σ₁ an embedded simple closed multi-curve, have extremal length EL[c].

• For $\phi: \Sigma_1 \hookrightarrow \Sigma_2$ a topological embedding, $\mathsf{SF}[\phi] = \sup_{C,c} \frac{\mathsf{EL}[\phi \circ c]}{\mathsf{EL}[c]}$.

Theorem (Kahn, Pilgrim, T)

 $\mathsf{SF}[\phi] \leq 1 \Leftrightarrow \phi$ homotopic to conformal embedding $\mathsf{SF}[\phi] < 1 \Leftrightarrow \phi$ homotopic to conformal embedding with some space

Relating graphs and surfaces

Elastic ribbon graph $\Gamma \rightsquigarrow$ Conformal surface $N_t\Gamma$

Proposition

Corollary

For Γ an elastic ribbon graph, $t \ll 1$, and For $\phi: \Gamma_1 \rightarrow \Gamma_2$ a suitable map between c a curve on Γ elastic ribbon graphs and $t \ll 1$,

 $\mathsf{EL}_{\Gamma}[c] \leqslant t \cdot \mathsf{EL}_{N_{t}\Gamma}[c] \leqslant (1+\varepsilon) \, \mathsf{EL}_{\Gamma}[c], \quad (1-\varepsilon) \, \mathsf{SF}[\phi] \leqslant \mathsf{SF}[N_{t}\phi] \leqslant (1+\varepsilon) \, \mathsf{SF}[\phi]$

where ε depends only on the local geometry of Γ .

where ε depends only on the local geometry of Γ_1 and $\Gamma_2.$

Dylan Thurston (Indiana University) Detecting rational maps using elastic graphs

Relating graphs and surfaces

Elastic ribbon graph $\Gamma \iff Conformal$ surface $N_t \Gamma$

Proposition

For Γ an elastic ribbon graph, $t \ll 1$, and For $\phi: \Gamma_1 \rightarrow \Gamma_2$ a suitable map between c a curve on Γ elastic ribbon graphs and $t \ll 1$,

where ε depends only on the local geometry of Γ .

 $\mathsf{EL}_{\Gamma}[c] \leq t \cdot \mathsf{EL}_{N,\Gamma}[c] \leq (1+\varepsilon) \mathsf{EL}_{\Gamma}[c], \quad (1-\varepsilon) \mathsf{SF}[\phi] \leq \mathsf{SF}[N_{t}\phi] \leq (1+\varepsilon) \mathsf{SF}[\phi]$

geometry of Γ_1 and Γ_2 .

Relating graphs and surfaces

Elastic ribbon graph $\Gamma \rightsquigarrow$ Conformal surface $N_t\Gamma$

Proposition

Corollary

For Γ an elastic ribbon graph, $t \ll 1$, and For $\phi: \Gamma_1 \rightarrow \Gamma_2$ a suitable map between c a curve on Γ elastic ribbon graphs and $t \ll 1$,

 $\mathsf{EL}_{\Gamma}[c] \leqslant t \cdot \mathsf{EL}_{N_{t}\Gamma}[c] \leqslant (1+\varepsilon) \, \mathsf{EL}_{\Gamma}[c], \quad (1-\varepsilon) \, \mathsf{SF}[\phi] \leqslant \mathsf{SF}[N_{t}\phi] \leqslant (1+\varepsilon) \, \mathsf{SF}[\phi]$

where ε depends only on the local geometry of Γ .

where ε depends only on the local geometry of Γ_1 and Γ_2 .

Outline

Spines and automata

Main theorem

Energies

Behavior under iteration

Questions

Logarithmic plot of SF, iterating running example with varying elastic lengths and topology.

Logarithmic plot of SF, iterating running example with varying elastic lengths and topology.

Logarithmic plot of SF, iterating running example with varying elastic lengths and topology.

Logarithmic plot of SF, iterating running example with varying elastic lengths and topology.

Definition

For $\pi, \phi: \Gamma_1 \to \Gamma_0$ a virtual endomorphism of elastic graphs, the *asymptotic* stretch factor is

$$\overline{\mathsf{SF}}[\phi] = \lim_{n \to \infty} \sqrt[n]{\mathsf{SF}}[\phi_n].$$

Lemma

 $\overline{\mathsf{SF}}[\phi]$ is independent of elastic weights on Γ_0 .

Proof.

$$SF[\phi \circ \psi] \leq SF[\phi] SF[\psi]$$

$$SF[\Gamma'_n \to \Gamma'_0] \leq SF[\Gamma'_n \to \Gamma_n] SF[\Gamma_n \to \Gamma_0] SF[\Gamma_0 \to \Gamma'_0]$$

$$= K_1 SF[\Gamma_n \to \Gamma_0] K_2.$$

Definition

For $\pi, \phi: \Gamma_1 \to \Gamma_0$ a virtual endomorphism of elastic graphs, the *asymptotic* stretch factor is

$$\overline{\mathsf{SF}}[\phi] = \lim_{n \to \infty} \sqrt[n]{\mathsf{SF}}[\phi_n].$$

Lemma

 $\overline{\mathsf{SF}}[\phi]$ is independent of elastic weights on Γ_0 .

Proof

$$SF[\phi \circ \psi] \leq SF[\phi] SF[\psi]$$

$$SF[\Gamma'_n \to \Gamma'_0] \leq SF[\Gamma'_n \to \Gamma_n] SF[\Gamma_n \to \Gamma_0] SF[\Gamma_0 \to \Gamma'_0]$$

$$= K_1 SF[\Gamma_n \to \Gamma_0] K_2.$$

Definition

For $\pi, \phi: \Gamma_1 \to \Gamma_0$ a virtual endomorphism of elastic graphs, the *asymptotic* stretch factor is

$$\overline{\mathsf{SF}}[\phi] = \lim_{n \to \infty} \sqrt[n]{\mathsf{SF}}[\phi_n].$$

Lemma

 $\overline{\mathsf{SF}}[\phi]$ is independent of elastic weights on Γ_0 .

Proof.

$$\begin{aligned} \mathsf{SF}[\phi \circ \psi] &\leq \mathsf{SF}[\phi] \, \mathsf{SF}[\psi] \\ \mathsf{SF}[\Gamma'_n \to \Gamma'_0] &\leq \mathsf{SF}[\Gamma'_n \to \Gamma_n] \, \mathsf{SF}[\Gamma_n \to \Gamma_0] \, \mathsf{SF}[\Gamma_0 \to \Gamma'_0] \\ &= \mathcal{K}_1 \, \mathsf{SF}[\Gamma_n \to \Gamma_0] \mathcal{K}_2. \end{aligned}$$

Definition

For $\pi, \phi: \Gamma_1 \to \Gamma_0$ a virtual endomorphism of elastic graphs, the *asymptotic* stretch factor is

$$\overline{\mathsf{SF}}[\phi] = \lim_{n \to \infty} \sqrt[n]{\mathsf{SF}}[\phi_n].$$

Lemma

 $\overline{\mathsf{SF}}[\phi]$ is independent of elastic weights on Γ_0 .

Proof.

$$\begin{aligned} \mathsf{SF}[\phi \circ \psi] &\leq \mathsf{SF}[\phi] \, \mathsf{SF}[\psi] \\ \mathsf{SF}[\Gamma'_n \to \Gamma'_0] &\leq \mathsf{SF}[\Gamma'_n \to \Gamma_n] \, \mathsf{SF}[\Gamma_n \to \Gamma_0] \, \mathsf{SF}[\Gamma_0 \to \Gamma'_0] \\ &= \mathcal{K}_1 \, \mathsf{SF}[\Gamma_n \to \Gamma_0] \mathcal{K}_2. \end{aligned}$$

Definition

For $\pi, \phi: S_1 \to S_0$ a virtual endomorphism of surfaces, the *asymptotic stretch* factor is $\frac{\overline{CE}}{\overline{CE}} = \frac{\Gamma}{2} \left[\frac{1}{2} - \frac{1}{2} \right]$

$$\overline{\mathsf{SF}}_{\mathrm{Surf}}[\phi] = \lim_{n \to \infty} \sqrt[n]{\mathsf{SF}}[\phi_n].$$

Lemma

 $\overline{\mathsf{SF}}_{\operatorname{Surf}}[\phi]$ is independent of conformal structure on S_0 .

Lemma

 $\overline{\mathsf{SF}}_{\mathrm{Surf}}[\phi] = \overline{\mathsf{SF}}_{\mathrm{Graph}}[\phi].$

Proof.

Definition

For $\pi, \phi: S_1 \to S_0$ a virtual endomorphism of surfaces, the asymptotic stretch factor is $\overline{SE}_{Surf}[\phi] = \lim_{n \to \infty} \sqrt[n]{SE[\phi_n]}$

$$\overline{\mathsf{SF}}_{\mathrm{Surf}}[\phi] = \lim_{n \to \infty} \sqrt[n]{\mathsf{SF}}[\phi_n].$$

Lemma

 $\overline{\mathsf{SF}}_{Surf}[\phi]$ is independent of conformal structure on S_0 .

Lemma

 $\overline{\mathsf{SF}}_{\mathrm{Surf}}[\phi] = \overline{\mathsf{SF}}_{\mathrm{Graph}}[\phi].$

Proof.

Definition

For $\pi, \phi: S_1 \to S_0$ a virtual endomorphism of surfaces, the asymptotic stretch factor is $\overline{SE}_{Surf}[\phi] = \lim_{n \to \infty} \sqrt[n]{SE[\phi_n]}$

$$\overline{\mathsf{SF}}_{\mathrm{Surf}}[\phi] = \lim_{n \to \infty} \sqrt[n]{\mathsf{SF}}[\phi_n].$$

Lemma

 $\overline{\mathsf{SF}}_{\operatorname{Surf}}[\phi]$ is independent of conformal structure on S_0 .

Lemma

 $\overline{\mathsf{SF}}_{\mathrm{Surf}}[\phi] = \overline{\mathsf{SF}}_{\mathrm{Graph}}[\phi].$

Proof.

Definition

For $\pi, \phi: S_1 \to S_0$ a virtual endomorphism of surfaces, the *asymptotic stretch* factor is

$$\overline{\mathsf{SF}}_{\mathrm{Surf}}[\phi] = \lim_{n \to \infty} \sqrt[n]{\mathsf{SF}}[\phi_n].$$

Lemma

 $\overline{\mathsf{SF}}_{Surf}[\phi]$ is independent of conformal structure on S_0 .

Lemma

 $\overline{\mathsf{SF}}_{\mathrm{Surf}}[\phi] = \overline{\mathsf{SF}}_{\mathrm{Graph}}[\phi].$

Proof.

Completing the proof

Theorem

Let $f: (S^2, P) \bigcirc$ be branched self-cover, at least one branch point in each cycle in P. Then f equivalent to a rational map \Leftrightarrow exists surface $\Sigma_0 \subset S^2 \setminus P$ so that

$$\Sigma_1 \xrightarrow[\phi]{\pi} \Sigma_0$$

with ϕ a conformal embedding.

Proof.

Folklore, using quasi-conformal surgery; written by Cui-Peng-Tan.

Corollary

 $\overline{\mathsf{SF}}_{\operatorname{Surf}}[\phi] < 1$ iff (π,ϕ) is equivalent to a rational map

Proof.

Combine theorem above with characterization of surface embedding by SF.

Completing the proof, cont

Corollary

 $\overline{\mathsf{SF}}_{\operatorname{Surf}}[\phi] < 1$ iff (π,ϕ) is equivalent to a rational map

Theorem

Let $f: (S^2, P) \mathfrak{S}$ be a branched self-cover with at least one branch point in each cycle in P, and let $\pi, \phi: \Gamma_1 \to \Gamma_0$ be a corresponding virtual endomorphism. Then the following are equivalent:

- f equivalent to a rational map
- for some metric on Γ_0 and some n > 0, $\phi_n \colon \Gamma_n \to \Gamma_0$ is loosening
- for every metric on Γ_0 and every $n \gg 0$, $\phi_n \colon \Gamma_n \to \Gamma_0$ is loosening

Outline

Spines and automata

Main theorem

Energies

Behavior under iteration

► Questions

Questions

- Census of rational maps? (Table of 464 rational maps vs. 1,701,935 prime knots)
- Apply criterion in concrete cases (e.g., matings)?
- Polynomial-sized certificates?
- Is $\overline{SF}[\phi]$ always algebraic? How to compute it?
- New proof of W. Thurston's annular obstruction?
- Direct interpretation of SF[ϕ] for ϕ : $S_1 \rightarrow S_2$ when SF[ϕ] < 1? (When SF[ϕ] \geq 1, it equals the minimal quasi-conformal dilatation.)
- What happens for topological automata that do not come from rational maps? What does $\overline{\mathsf{SF}}[\phi] < 1$ mean in general?