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Many equivalent theories

Several theories giving 4-manifold invariants:

Donaldson theory
++ (conj. Seiberg—Witten '94)
MonOpoles (Seiberg-Witten)

(Taubes '08) (’\——\—//\ At kag'f for 3l

Embedded contact homology (ECH) L invariants
= (Kutluhan-Lee-Taubes, Colin-Ghiggini-Honda "10)
Heegaard Floer (HF) homology

We topologists only have one trick!

Each theory has advantages.

Focus

HF homology, the most computable.



TQFT-like structure

Geometry Algebra

Closed 4-manifold W*, Invariant HF(W,s)
Spin€ structure

3-manifold Y3, Homology thy HF(Y,s)

Spin€ structure
Cobordism dW* = (—Y1)U Yo  HF(W) : HF(Y;1) — HF(Y>)

Subtleties omitted here. E.g., if you make an ordinary TQFT,
invariants of closed 4-manifolds are 0.

Similar story for knots in 3-manifolds with surface cobordisms.

Focus

HFK(S3, K;Fy), the easiest to understand



Knot homologies in general

Many knot invariants are one- or two-variable Laurent polynomials,
associated to quantum groups.

Can often find a doubly- or triply-graded homology theory whose
Euler characteristic is the polynomial invariant.

Group Knot poly Knot homology

SL(2) Jones J(t) Khovanov (1999)

Kh-Roz (2004) (n € Z)
Kh-Roz (2005) (n variable)

SL(n)  HOMFLY H(a, z)

Heegaard Floer
Seiberg—Witten Floer
OSp(n)  Kauffman F(a,z) Kh-Roz (2007) (conjectural)

GL(1|1) Alexander A(t)

Categorification is passage polynomial = homology.



Properties of HFK

dim(gﬁ(;(K;s)): (k =10;32)  Characteristics of HFK:

it » Bigraded;
Maslov » Euler characteristic is
11 Conway-Alexander polynomial;

2 » Max grading is knot genus
1 2 + (so detects unknot);
Alexander (Ozsvath-Szabo 2001)

1 » Determines knot fibration;

(Ghiggini, Ni 2006)
» Defined via pseudo-holomorphic

curves.
We will give a simple algorithm for
computing HFK. ..

...and so the world's simplest algorithm for
knot genusl!
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Setting: Grid diagrams

O

X

X

O
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Grid diagram: square diagram with
one X and one O per row and
column.

Turn it into a knot: connect
X to O in each column;
O to X in each row.
Cross vertical strands over
horizontal.

Grid diagrams exist: take any
diagram, rotate crossings so vertical
crosses over horizontal.

The knot is unchanged under
cyclic rotations:

Move top segment to bottom.
Think about diagram on a torus.
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Computing the Alexander polynomial

We categorify the following formula:

» Make matrix of ¢~ Winding #

(with extra row/column of 1's);



Computing the Alexander polynomial

We categorify the following formula:

=+t*(1-t)"1A(K; t)

» Make matrix of ¢—inding #
(with extra row/column of 1's);

» det determines the Conway-Alexander polynomial A
(n = size of diagram; here 6)
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Computing HFK: Chain complex CK

Define a chain complex CK over .
» n! generators: matchings between
horizontal and vertical gridcircles
(as counted in det for Alexander).
Boundary @ switches corners on
empty rectangles:

Sum over all ways to switch
SW-NE corners of an empty

rectangle to NW-SE corners.
(Empty means: no X's, O's, or
other points in generator.)



Computing HFK: Chain complex CK

Define a chain complex CK over .
» n! generators: matchings between
horizontal and vertical gridcircles
(as counted in det for Alexander).
Boundary @ switches corners on
empty rectangles:

Sum over all ways to switch
SW-NE corners of an empty

rectangle to NW-SE corners.
(Empty means: no X's, O's, or
other points in generator.)



Computing HFK: Chain complex CK

Define a chain complex CK over [Fy.
» n! generators: matchings between
horizontal and vertical gridcircles

O >< (as counted in det for Alexander).

. » Boundary 0 switches corners on

>< O empty rectangles:

® ® Sum over all ways to switch
>< O SW-NE corners of an empty
rectangle to NW-SE corners.

(Empty means: no X's, O's, or
other points in generator.)



Computing HFK: Chain complex CK

Define a chain complex CK over [Fy.
» n! generators: matchings between
horizontal and vertical gridcircles

¢ (as counted in det for Alexander).
O X
. » Boundary 0 switches corners on
>< O empty rectangles:
L
O X
077X -
® >< O‘ Sum over all ways to switch
>< . O SW-NE corners of an empty

rectangle to NW-SE corners.
(Empty means: no X's, O's, or
other points in generator.)



Computing HFK: Chain complex CK

Define a chain complex CK over [Fy.
» n! generators: matchings between
horizontal and vertical gridcircles
L

O >< (as counted in det for Alexander).

» Boundary 9 switches corners on

.>< O empty rectangles:

O X
O7X —
X O

® ® Sum over all ways to switch
>< O SW-NE corners of an empty
rectangle to NW-SE corners.

(Empty means: no X's, O's, or
other points in generator.)




Computing HFK: Chain complex CK

Define a chain complex CK over .
» n! generators: matchings between
horizontal and vertical gridcircles
(as counted in det for Alexander).
Boundary 0 switches corners on

O X .
%X O % empty rectangles:
5 %

O, X —
X O

® Sum over all ways to switch

>< . O SW-NE corners of an empty
rectangle to NW-SE corners.

(Empty means: no X's, O's, or
other points in generator.)

L 4

[



Computing HFK: Chain complex CK

Define a chain complex CK over [Fy.
» n! generators: matchings between
horizontal and vertical gridcircles
L

O >< (as counted in det for Alexander).
» Boundary 9 switches corners on

O % empty rectangles:

® ® Sum over all ways to switch
>< O SW-NE corners of an empty
rectangle to NW-SE corners.

(Empty means: no X's, O's, or
other points in generator.)



Computing HFK: & =0
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If rectangles are disjoint,
take rectangles in either
order.

If rectangles share a corner,
decompose the union in
another way.
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Computing HFK: Gradings on CK

In the plane,

removes one inversion.
For A, B, C C R?,

T(AB) == #{00 |ac A be B)
I(A— B, C) := Z(A, C) — I(B. C)

For x a generator, X = set of X's, O = set of of O's, gradings are:
» Maslov: M(x) :=Z(x—0,x—0)+ 1.
» Alexander: Sum of winding numbers around generator pts, or

A(x) = 3(Z(x — O,x — 0) — Z(x — X,x — X) — (n — 1)).



Computing HFK: The answer

Theorem (Manolescu-Ozsvath-Sarkar)
For G a grid diagram for K,
H,(CK(G)) ~ HFK(K) @ V&1
where V 1= (F2)0,0 & (F2)-1,-1.
(Remember the factor of (1 — t)"~! in determinant formula for A.)

Gillam and Baldwin used this to compute HFK for all knots
with < 11 crossings, including new values of knot genus.
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Heegaard diagrams

Heegaard diagram H: surface ¥ with two sets of marked curves
a=Ja;, B=7

(No intersection within «, 3)

Represents a 3-manifold:
» Take X x [0,1]
» Attach handles on a x {0}, B x {1}

» Cap off boundaries



Complex CF(H)

Generators: collections of points in « N 3 with
» One point on each a;

» One point on each j;

Differential: Count pseudo-holomorphic curves
> In Sym*(X) (Ozsvath-Szabo)
» In X x [0,1] x R (Cylindrical, Lipshitz)



Another variant: HF™

To remove factors of V®n—1.

Complex HFK™: variant of HFK

i Module over F>[U]

U has degree (—1,—2)

Related to HFK by Universal Coefficient
Theorem (set U to 0 on chains).

dim m;(K;s):

P
(R
.

To compute: Add one U; for each O.
1 Complex CK™(G) over Fo[U,. .., Un]

[N

0 counts rects. that contain only O's,
weighted by corresponding U;.

Theorem

(Manolescu-Ozsvath-Sarkar)

H,(CK™(G)) ~ HFK™ (K).

Each U; acts by U on the homology.
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Flavors of HF

In general, count curves S with a coefficient of U"=(5)
n,(S) = # of times S covers basepoint z

Coefficients in yields

F[U]/(U=0)  HFY)

F2[U] HFE(Y)

Fo[U, U] HF>®(Y) (determined by H*(Y))

Fo[U, U7 /F2[U]  HFT(Y)

Compare: Equivariant cohomology, homology of total space,
homology of fixed set

Exact triangle:

oo = HF(Y) = HF®(Y) = HF (Y) — ...



4-manifold invariants: The problem

Geometry Algebra

3-manifold Y3, Homology thy HF(Y,s)
Spin© structure s
Cobordism dW* = (—Y1)U Yo  HF(W) : HF(Y;1) — HF(Y>)

Works for any of i‘:fhf-' HF~, HF™, HF"

Usual way to get invariant of W*: cobordism from S3 to S3
Get zero!



4-manifold invariants: The solution
Lemma

If W* is a cobordism with by (W) > 0, then HF**(W) = 0 as map.
For by (W) > 2, split W = Wy Uy W,

HEH(v) 22 e 3

HF~ (Wh)
HF_(Sa) — HF (Y)

HF®(Y)



Appendix: Crossing number vs. Grid number

Knots are usually ordered by crossing number.
Minimum number of crossings in a planar diagram.

For grid diagrams, natural to consider grid number (or arc index):
Minimum size of a grid diagram.

Theorem (Bae—Park, Morton—Beltrami)

Grid number of an alternating knot is equal to crossing number + 2.
For non-alternating knots, grid number strictly less.



