Heegaard Floer Homology

Lecture 1: HF Homology from Grid Diagrams

Dylan Thurston

July 19, 2010, XIX OMGTP, Faro

0,

http://www.math.columbia.edu/~dpt/speaking

Outline

► Heegaard Floer homology in context

Grid diagrams

Computing $\widehat{\mathit{HFK}}$

General structure of HF homology

Many equivalent theories

Several theories giving 4-manifold invariants:

We topologists only have one trick!

Each theory has advantages.

Focus

 \widehat{HF} homology, the most computable.

TQFT-like structure

Geometry	Algebra
Closed 4-manifold W ⁴ , Spin ^c structure s	Invariant $HF(W,\mathfrak{s})$
3-manifold Y^3 , Spin ^c structure $\mathfrak s$	Homology thy $\mathit{HF}(Y,\mathfrak{s})$
Cobordism $\partial W^4 = (-Y_1) \cup Y_2$	$\mathit{HF}(W):\mathit{HF}(Y_1)\to\mathit{HF}(Y_2)$

Subtleties omitted here. E.g., if you make an ordinary TQFT, invariants of closed 4-manifolds are 0.

Similar story for knots in 3-manifolds with surface cobordisms.

Focus

 $HFK(S^3, K; \mathbb{F}_2)$, the easiest to understand

Knot homologies in general

Many knot invariants are one- or two-variable Laurent polynomials, associated to quantum groups.

Can often find a doubly- or triply-graded homology theory whose Euler characteristic is the polynomial invariant.

Group	Knot poly	Knot homology
SL(2)	Jones $J(t)$	Khovanov (1999)
SL(n) HOMFLY $H(a, z)$	$\begin{cases} Kh\text{-}Roz \ (2004) \ (n \in \mathbb{Z}) \\ Kh\text{-}Roz \ (2005) \ (n \ variable) \end{cases}$	
JL(II)	HOWILL H(a, 2)	Kh-Roz (2005) (<i>n</i> variable)
C1 (1 1)	Alexander $\Delta(t)$	Heegaard Floer
$GL(1 \mid 1)$		Heegaard Floer Seiberg–Witten Floer
OSp(n)	Kauffman $F(a,z)$	Kh-Roz (2007) (conjectural)

Categorification is passage polynomial \Rightarrow homology.

Properties of HFK

Characteristics of \widehat{HFK} :

- ► Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus (so detects unknot);
 (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing *HFK*...

Properties of HFK

Characteristics of HFK:

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus (so detects unknot);
 (Ozsváth-Szabó 2001)
- Determines knot fibration;
 (Chiggini Ni 2006)
 - (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing *HFK*...

Properties of \widehat{HFK}

Characteristics of \widehat{HFK} :

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- ► Max grading is knot genus (so detects unknot); (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing *HFK*...

Properties of *HFK*

Characteristics of \widehat{HFK} :

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus (so detects unknot);
 (Ozsváth-Szabó 2001)
- ▶ Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing *HFK*...

Properties of \widehat{HFK}

Characteristics of \widehat{HFK} :

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus (so detects unknot);
 (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing *HFK*...

Properties of \widehat{HFK}

Characteristics of \widehat{HFK} :

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus (so detects unknot);
 (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing *HFK*...

Properties of *HFK*

Characteristics of HFK:

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus (so detects unknot);
 (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing *HFK*...

Outline

Heegaard Floer homology in context

► Grid diagrams

Computing
$$\widehat{HFK}$$

General structure of HF homology

Grid diagram: square diagram with one X and one O per row and column.

Turn it into a knot: connect X to O in each column; O to X in each row.

Cross vertical strands over horizontal.

Grid diagrams exist: take any diagram, rotate crossings so vertical crosses over horizontal.

The knot is unchanged under cyclic rotations:

Move top segment to bottom.

Think about diagram on a torus.

Grid diagram: square diagram with one X and one O per row and column.

Turn it into a knot: connect X to O in each column; O to X in each row. Cross vertical strands over horizontal.

Grid diagrams exist: take any diagram, rotate crossings so vertical crosses over horizontal.

The knot is unchanged under cyclic rotations:

Move top segment to bottom.

Think about diagram on a torus.

Grid diagram: square diagram with one X and one O per row and column.

Turn it into a knot: connect

X to O in each column;

O to X in each row.

Cross vertical strands over horizontal.

Grid diagrams exist: take any diagram, rotate crossings so vertical crosses over horizontal.

The knot is unchanged under *cyclic rotations*:

Move top segment to bottom. Think about diagram on a torus.

Grid diagram: square diagram with one X and one O per row and column.

Turn it into a knot: connect

X to O in each column;
O to X in each row.

Cross vertical strands over

horizontal.

Grid diagrams exist: take any diagram, rotate crossings so vertical crosses over horizontal.

The knot is unchanged under cyclic rotations.

Move top segment to bottom.

Think about diagram on a torus.

Grid diagram: square diagram with one X and one O per row and column.

Turn it into a knot: connect X to O in each column; O to X in each row.

Cross vertical strands over horizontal.

Grid diagrams exist: take any diagram, rotate crossings so vertical crosses over horizontal.

The knot is unchanged under *cyclic rotations*:

Move top segment to bottom.

Think about diagram on a torus.

Grid diagram: square diagram with one X and one O per row and column.

Turn it into a knot: connect X to O in each column; O to X in each row. Cross vertical strands over

horizontal.

Grid diagrams exist: take any diagram, rotate crossings so vertical crosses over horizontal.

The knot is unchanged under cyclic rotations:

Move top segment to bottom. Think about diagram on a torus.

Computing the Alexander polynomial

We categorify the following formula:

- Make matrix of t^{-winding #} (with extra row/column of 1's);
 - det determines the Conway-Alexander polynomial Δ
 (n = size of diagram; here 6)

Computing the Alexander polynomial

We categorify the following formula:

- Make matrix of t^{−winding} # (with extra row/column of 1's);
- ▶ det determines the Conway-Alexander polynomial ∆ (n = size of diagram; here 6)

Outline

Heegaard Floer homology in context

Grid diagrams

► Computing *ĤFK*

General structure of HF homology

Define a chain complex \widetilde{CK} over \mathbb{F}_2 .

- n! generators: matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- ▶ Boundary ∂ switches corners on empty rectangles:

Define a chain complex \widetilde{CK} over \mathbb{F}_2 .

- n! generators: matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- ▶ Boundary ∂ switches corners on empty rectangles:

Define a chain complex \widetilde{CK} over \mathbb{F}_2 .

- n! generators: matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- ▶ Boundary ∂ switches corners on *empty rectangles*:

Define a chain complex \widetilde{CK} over \mathbb{F}_2 .

- n! generators: matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- ▶ Boundary ∂ switches corners on *empty rectangles*:

Define a chain complex \widetilde{CK} over \mathbb{F}_2 .

- n! generators: matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- ▶ Boundary ∂ switches corners on *empty rectangles*:

Define a chain complex \widetilde{CK} over \mathbb{F}_2 .

- n! generators: matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- ▶ Boundary ∂ switches corners on empty rectangles:

Define a chain complex \widetilde{CK} over \mathbb{F}_2 .

- n! generators: matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- ▶ Boundary ∂ switches corners on *empty rectangles*:

- If rectangles are disjoint, take rectangles in either order.
- If rectangles share a corner, decompose the union in another way.

- If rectangles are disjoint, take rectangles in either order.
- If rectangles share a corner, decompose the union in another way.

- If rectangles are disjoint, take rectangles in either order.
- If rectangles share a corner, decompose the union in another way.

- If rectangles are disjoint, take rectangles in either order.
- If rectangles share a corner, decompose the union in another way.

Computing \widehat{HFK} : Gradings on \widetilde{CK}

In the plane,

removes one inversion.

For $A, B, C \subset \mathbb{R}^2$,

$$\mathcal{I}(A,B) := \#\{ a\Box^b \mid a \in A, b \in B \}$$

$$\mathcal{I}(A-B,C) := \mathcal{I}(A,C) - \mathcal{I}(B,C)$$

For x a generator, $\mathbb{X} = \text{set of } X$'s, $\mathbb{O} = \text{set of of } O$'s, gradings are:

- ▶ Maslov: $M(x) := \mathcal{I}(x \mathbb{O}, x \mathbb{O}) + 1$.
- ▶ Alexander: Sum of winding numbers around generator pts, or $A(\mathbf{x}) := \frac{1}{2} (\mathcal{I}(\mathbf{x} \mathbb{O}, \mathbf{x} \mathbb{O}) \mathcal{I}(\mathbf{x} \mathbb{X}, \mathbf{x} \mathbb{X}) (n-1)).$

Computing HFK: The answer

Theorem (Manolescu-Ozsváth-Sarkar)

For G a grid diagram for K,

$$H_*(\widetilde{\mathit{CK}}(G)) \simeq \widehat{\mathit{HFK}}(K) \otimes V^{\otimes n-1}$$

where $V := (\mathbb{F}_2)_{0,0} \oplus (\mathbb{F}_2)_{-1,-1}$.

(Remember the factor of $(1-t)^{n-1}$ in determinant formula for Δ .)

Gillam and Baldwin used this to compute \widehat{HFK} for all knots with ≤ 11 crossings, including new values of knot genus.

Outline

Heegaard Floer homology in context

Grid diagrams

Computing $\widehat{\mathit{HFK}}$

► General structure of HF homology

Heegaard diagrams

Heegaard diagram \mathcal{H} : surface Σ with two sets of marked curves $\alpha = \bigcup \alpha_i$, $\beta = \beta_i$ (No intersection within α , β)

Represents a 3-manifold:

- ► Take Σ × [0,1]
- ▶ Attach handles on $\alpha \times \{0\}$, $\beta \times \{1\}$
- Cap off boundaries

Complex $CF(\mathcal{H})$

Generators: collections of points in $oldsymbol{lpha}\capoldsymbol{eta}$ with

- ▶ One point on each α_i
- One point on each β_i

Differential: Count pseudo-holomorphic curves

- In Sym^k(Σ) (Ozsváth-Szabó)
- ▶ In $\Sigma \times [0,1] \times \mathbb{R}$ (Cylindrical, Lipshitz)

To remove factors of $V^{\otimes n-1}$:

Complex HFK^- : variant of \widehat{HFK} Module over $\mathbb{F}_2[U]$ U has degree (-1, -2)

Related to \widehat{HFK} by Universal Coefficient Theorem (set U to 0 on chains).

To compute: Add one U_i for each O. Complex $CK^-(G)$ over $\mathbb{F}_2[U_1,\ldots,U_n]$ ∂ counts rects. that contain only O's, weighted by corresponding U_i .

Theorem (Manolescu-Ozsváth-Sarkar)

 $H_*(CK^-(G)) \simeq HFK^-(K)$. Each U_i acts by U on the I

Each U_i acts by U on the homology.

To remove factors of $V^{\otimes n-1}$:

Complex HFK^- : variant of \widehat{HFK} Module over $\mathbb{F}_2[U]$ U has degree (-1,-2)Related to \widehat{HFK} by Universal Coefficient Theorem (set U to 0 on chains).

To compute: Add one U_i for each O. Complex $CK^-(G)$ over $\mathbb{F}_2[U_1,\ldots,U_n]$ ∂ counts rects. that contain only O's, weighted by corresponding U_i .

Theorem (Manolescu-Ozsváth-Sarkar) $H_*(CK^-(G)) \simeq HFK^-(K)$.

Each U_i acts by U on the homology.

To remove factors of $V^{\otimes n-1}$:

Complex HFK^- : variant of \widehat{HFK} Module over $\mathbb{F}_2[U]$ U has degree (-1,-2)Related to \widehat{HFK} by Universal Coefficient Theorem (set U to 0 on chains).

To compute: Add one U_i for each O. Complex $CK^-(G)$ over $\mathbb{F}_2[U_1,\ldots,U_n]$ ∂ counts rects. that contain only O's, weighted by corresponding U_i .

Theorem (Manolescu-Ozsváth-Sarkar)

 $H_*(CK^-(G)) \simeq HFK^-(K)$. Each U_i acts by U on the homology.

To remove factors of $V^{\otimes n-1}$:

Complex HFK^- : variant of \widehat{HFK} Module over $\mathbb{F}_2[U]$ U has degree (-1,-2)Related to \widehat{HFK} by Universal Coefficient Theorem (set U to 0 on chains).

To compute: Add one U_i for each O. Complex $CK^-(G)$ over $\mathbb{F}_2[U_1,\ldots,U_n]$ ∂ counts rects. that contain only O's, weighted by corresponding U_i .

Theorem (Manolescu-Ozsváth-Sarkar) $H_*(CK^-(G)) \simeq HFK^-(K)$.

Each U_i acts by U on the homology.

To remove factors of $V^{\otimes n-1}$:

Complex HFK^- : variant of \widehat{HFK} Module over $\mathbb{F}_2[U]$ U has degree (-1,-2)Related to \widehat{HFK} by Universal Coefficient Theorem (set U to 0 on chains).

To compute: Add one U_i for each O. Complex $CK^-(G)$ over $\mathbb{F}_2[U_1,\ldots,U_n]$ ∂ counts rects. that contain only O's, weighted by corresponding U_i .

Theorem (Manolescu-Ozsváth-Sarkar) $H_*(CK^-(G)) \simeq HFK^-(K)$.

Each U_i acts by U on the homology.

Flavors of HF

In general, count curves S with a coefficient of $U^{n_z(S)}$ $n_z(S) = \#$ of times S covers basepoint z

Coefficients in	yields
$\mathbb{F}_2[U]/(U=0)$	$\widehat{\mathit{HF}}(Y)$
$\mathbb{F}_2[U]$	$HF^{-}(Y)$
$\mathbb{F}_2[U,U^{-1}]$	$HF^{\infty}(Y)$ (determined by $H^*(Y)$)
$\mathbb{F}_2[U,U^{-1}]/\mathbb{F}_2[U]$	$HF^+(Y)$

Compare: Equivariant cohomology, homology of total space, homology of fixed set

Exact triangle:

$$\cdots \rightarrow HF^{-}(Y) \rightarrow HF^{\infty}(Y) \rightarrow HF^{+}(Y) \rightarrow \cdots$$

4-manifold invariants: The problem

Geometry	Algebra
3-manifold Y^3 , Spin ^c structure $\mathfrak s$	Homology thy $\mathit{HF}(Y,\mathfrak{s})$
Cobordism $\partial W^4 = (-Y_1) \cup Y_2$	$\mathit{HF}(W):\mathit{HF}(Y_1)\to\mathit{HF}(Y_2)$

Works for any of \widehat{HF} , HF^- , HF^{∞} , HF^+

Usual way to get invariant of W^4 : cobordism from S^3 to S^3 Get zero!

4-manifold invariants: The solution Lemma

If W^4 is a cobordism with $b_2^+(W) > 0$, then $HF^{\infty}(W) = 0$ as map.

For
$$b_2^+(W) \ge 2$$
, split $W = W_1 \cup_Y W_2$

$$W_1 \qquad \qquad W_2$$

$$HF^{\infty}(Y)$$

$$HF^+(Y) \xrightarrow{HF^+(W_2)} HF^+(S^3)$$

$$HF^-(S^3) \xrightarrow{HF^-(W_1)} HF^-(Y)$$

$$HF^{\infty}(Y)$$

Appendix: Crossing number vs. Grid number

Knots are usually ordered by *crossing number*. Minimum number of crossings in a planar diagram.

For grid diagrams, natural to consider *grid number* (or *arc index*): Minimum size of a grid diagram.

Theorem (Bae-Park, Morton-Beltrami)

Grid number of an alternating knot is equal to crossing number +2. For non-alternating knots, grid number strictly less.